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1 Introduction

Let 4 be a normed space of functions and let A be a subset of 4. The
prototypical problem in approximation theory consists in approximating an
element f of 4 by an element of A, that is looking for an element in A that
has minimum distance from f. It is also natural to consider the distance of
f from A as

6(f,A) = inf Ilf-all (1)
aEA

and to study this quantity for different choices of A and f E 4D. In the classical
theory of approximation the set A is usually a linear k-dimensional subspace
Ak C 0 (Lorentz, 1986) (the algebraic or the trigonometric polynomials of
given degree and the splines with fixed knots are typical examples of such
subspaces), while in nonlinear approximation theory the linear subspace Ak

is replaced by a k-dimensional manifold Mk (DeVore, 1991). Usually one has
a family of manifolds {Mk}j' such that Uk Mk is dense in '1 and

MA cM 2 C...cM,,c...

so that the quantity S(f, Mk) is a monotone decreasing function of k converg-
ing to zero and the approximation in Mk gets arbitrarily close to f provided
one takes k sufficiently large. However, since the computational time needed
to find an approximation to f in Mk is going to increase with k, it is of great
interest to know the rate of convergence to zero of 6(f, Mk) as a function
of k. This rate of convergence can be taken as a measure of the complexity
of f with respect to the manifolds Mk, in the sense that "simple" functions
should have a fast rate of convergence.

As an example, let us consider as space t the space A,0 of the functions
whose partial derivatives of order s are bounded in the uniform norm on
the d-dimensional cube I = [0, 1 1d and satisfy a Lipschiz condition with
exponent ct (Lorentz, 1986, p. 50). On the space 0 we consider the uniform
norm Ilf11 = maxi If (x)l. Choosing as manifold Mk the set of polynomials
of degree n - 1 in each of the d variables, that is a linear space of dimension
k 0 , the following bound can be obtained (Lorentz, 1986):

6(f, Mk) < Ndk-J'- (2)

where N is a constant that depends on f and s.
From this example we see that the rate of convergence dramatically

slows down when the dimension d increases, revealing the discouraging phe-
nomenon known under the name of "curse of dimensionality" (Bellman,
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1961). However, for every fixed. number of dimensions, arbitrary inverse-
power rates of convergence can, be obtained if the smoothness index s is
chosen big enough. This result is typical in linear approximation theory
since the computation of the n-width of the space A' shows that the best
linear technique cannot improve the rate of convergence O(k-'!) (Lorentz
1986, p. 135).

Similar results, in both linear and nonlinear approximation theory (De-
Vore, 1991), hold for other spaces of functions in which smoothness is mea-
sured in a different way. We are therefore led to argue that in practical
situations we can only approximate functions whose smoothness increases
with the dimension. As an example-we consider again the spaces A"Q for
s = d. It is clear from eq. (2) that in this case the rate of convergence of
polynomial approximation to an f E Ad is O(k-') and it is in this sense
"independent on dimensionality".

In a recent paper (1990) Jones showed how to construct a sequence of
functions f,, that approximate certain functions in a Hilbert space with a
rate of convergence O(;.). A statement of Jones' lemma is given in section
2. application of this result to projection pursuit regression and neural
networks has already been presented in (Jones 1990; Barron 1991), where
appropriate approximation schemes and spaces od of functions in Rd are
described in which the complexity of approximation increases mildly with
d. It is worthwhile to observe that this is obtained at the expense that the
functions contained in 4d are more and more "regular" when d increases.
Moreover, it is not completely clear yet how computationally expensive the
approximation f, may be. A very short review of Jones' and Barron's results
is given in section 5.

The aim of this paper is to present an application of Jones' lemma to
the approximation by linear combination of translates of a given function
G. In particular for appropriate choices of G we obtain estimates for the
rate of convergence of certain Radial Basis Functions schemes (Micchelli,
1986; Powell, 1987; Dyn, 1991; Poggio and Girosi, 1990) on certain spaces
of functions of Sobolev type. For the convenience of the reader we collect in
the appendix a few known results about Sobolev spaces and integration of
Banach valued functions.

2 The Maurey-Jones-Barron Lemma

Our result is based on a lemma by Jones (1990) on the convergence rate of an
iterative approximation scheme in Hilbert spaces. A formally similar lemma,
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brought to our attention by R. Dudley (Dudley, 1991), is due to Maurey,
and was published by Pisier in 1981. However Jones' lemma is constructive
while Maurey's is not. Here we report a version of the lemma due to Barron
(Barron 1991) that contains a slight refinement of Jones' result:

Lemma 2.1 (Maurey-Jones-Barron) If f is in the closure of the convex
hull of a set g in a Hilbert space H with jIIgj <- b for each g E g, then for
every n > 1 and for c > b2 - If 112 there is a f, in the convex hull of n points
in g such that

Ilf- f- m, < c.
n

The interesting feature of this lemma is that the sequence {fj}=0 has the
following structure:

fn+l = a.fn + (1 - an)gn (3)

where a, and gn are chosen in order to "approximately solve" the following
minimization problem:

inf 11f - a,,fn - (1 - an-)g-II
cnER,gnE9

where by "approximately solve" we mean that it is sufficient at each step to
reach a distance from the infimum of order O(-'). The lemma is therefore
constructive, providing a procedure that can achieve the prescribed rate.

In order to exploit this result we need to define suitable classes of functions
which are the closure of the convex hull of some subset g of a Hilbert space
H. We are therefore naturally led to study functions that can be represented
as "infinite" convex combinations of the type

00 00

f= gi a, Ž, 0g, , , E,= . (4)
i=l i=1

One way to approach the problem consists in utilizing the integral represen-
tation of functions. Suppose that the functions in a Hilbert space H can be
represented by the integral

f(x) = IM Gt(x)dct(t) (5)

where da is some measure on the parameter set M. If da is a finite measure,
the integral (5) can be seen as an infinite convex combination of the type of

3



eq. (4), and therefore the function f belongs to the closure of the convex
hull of some subset of H. In the next section we formalize this idea in the
special case in which the functions Gt(x) are the translates G(x - t) of a
fixed function G and we show how it leads to define approximation techniques
whose rate of convergence in appropriate spaces of functions is 0(1 ).

3 Approximation by Translates of a Func-
tion G

Let G be a fixed function belonging to L2(Rd) = L2 . We define the space LG
as the set of the functions of the form

f = G * A (6)

where A is any signed Radon measure whose total variation IAIRd =_ IAII is
finite and the symbol • stands for the convolution operation. Assuming from
now on that IIGHIL, = 1, the following inequality holds (Stein and Weiss,
1971)

Ilf lLn -< IhAII
showing the inclusion LG C L 2. It is natural to approximate elements of LG
by elements of the set

n

G. = {f E L2 I f = AGt,, A, E R, t E Rd} , (7)

where we indicate by Gt the function G translated by the vector t, that is
Gt(x) = G(x - t). Using lemma 2.1 we can now prove the following

Theorem 3.1 Let f be a function in LG, so that f = G * A, where G E L2,
IIGIIL 2 = 1, and A is a Radon signed measure of bounded total variation IhAII.
Then f belongs to the L2 -closure of the convex hull of the set

A = {sGt I t E Rd, Ish _< IIAII}
and there exist n coefficients c, and n vectors t,, such that:

n

hI! - • cG(x- t)L2 <- _
-=1 n

for all c > 11Ail -1 _ 1f1L2.
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Proof: We consider the vector-valued function

T: Rd - L2 (Rd)

such that

T(t) = Gt•

The function T is continuous, hence A-measurable, moreover one has

IRd [IZ(t)IIL2dIAI(t) = IIGIIL 2 Rd dIAI(t) = hAil < ±o

Therefore it exists the Bochner integral of T with respect to A (see ap-
pendix A):

q I T(t)dA(t)

and by lemma (A.2) we have

7 E co•A (8)

where A = {sGt I t E Rd, Isl < IIAII}, co A stands for the convex hull of
the set A and the bar stands for the closure in L2. Now we shall prove that

= f. This can be done by proving that

F'f = F*r7, VF" E (L 2)" (9)

where (L2)" is the dual space of L2 , that is L2 itself. From the properties of
the Bochner integral we have:

P,= F I" T(t)dA(t)J (F'Gt))dA(t)

Taking this into account, the identity (9) can be written as:

Ind dx O(x)JRd G(x-t)dA (t) = IRd dA(t)JRd dx O(x)G(x-t), V4 E L2 .

Now by Fubini's theorem the two sides of this last equation are equal, and
therefore r = f.
By eq. (8) f = q belongs to the L2 closure of the convex hull of the set A,
which is contained in the ball of radius fhAIl. By the Maurey-Jones-Barron
lemma we can find a set of n coefficients ca and n vectors t, such that:
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11f - c.G(x - t.)11' < -

for all c > C(f) = -I•l 2 - 1fII/lL2

In theorem (3.1) the approximation error is measured in the L2 norm. Im-
posing some restrictions on the function G a similar estimate can be obtained
for other norms, and in particular for the Lo, norm. In fact, suppose that
G E Hs,2 , where H .2 (Rd) = H, 2 is the Sobolev space of the functions whose
weak derivatives up to order s are in L2 (see Appendix B). Then one can
easily see that theorem (3.1) can be'formulated in the Hilbert space H8,2
instead of L2:

Theorem 3.2 Let f be a function such that f = G * A, where G E H"'2 ,
IIGIIHS,2 = 1. and A is a Radon signed measure of bounded total variation
IhAII. Then f belongs to the H"2 -closure of the convex hull of the set

A = {sGt It ERd, Isl 5 IAII}
and there exist n coefficients c, and n vectors t,, such that:

n

for all c > 11Ai 2 -HIfllI0,2.

We notice that if the condition s > 1 holds, then the Sobolev embedding
22C

theorem (see Appendix B) guarantees that Hs2 C CO and that it exists
c, > 0 such that

I1" -~o 1< c, ll" - 'W.2•

Therefore the approximating sequence {fn} converges uniformly, and the
following corollary holds:

Corollary 3.1 Under the conditions of theorem (3.2), if s > 1 there exists
2

n coefficients c,, n vectors t., and a constant c, such that:

n c11f - E c, G(x - ta) III., <- Ci-
a---- n

for all c > 11A 2 -Ilfll.,2.-
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From a practical point of view, in many cases, what it is really interesting
is an estimate of the error in the sup norm, instead of the L2 or H-'2 norm.
Think for example of the problem of approximating the trajectory of a robot
arm: it is clear that what is really needed in this case is a small L, norm of
the difference between the desired and the approximated trajectory, while a
small L2 norm is of little interest.

Remark: we notice that the elements of the set G,, defined by eq. (7) can
also be seen as points of a manifold Mk whose dimension is k = n(d + 1).
Therefore theorem (3.1) can also be formulated in terms of the number of
parameters k that are needed to achieve a certain error, saying that if f E LG
then

O(f, Mk) < C(f) k+d
- k

If we compare this result with the typical estimates (DeVore, 1991), we
notice that in this case the way the dimension affects the convergence curve
is much less dramatic, corresponding to a simple scale dilation. This means
that in some sense the complexity of the space LG does not increase very
much when the dimension increases. It is interesting to characterize, for
several specific choices of G, the structure of LG and to understand whether
it contains a "sufficiently large" set of functions, where by "sufficiently h.rge"
we mean large enough to contain functions that are encountered in practical
cases. This will be done in the next section for two particular choices of G.

4 Examples of functions G
In this section we consider two choices for the function G and study the
corresponding functions spaces LG. We remind that for any given G E L2 (Rd)
the space LG is defined as

LG= {fE L2(Rd) I f = G *A•,A•E•M(Rd)}
where M(Rd) =M M is the space of Radon signed measures of bounded total
variation on ld.

4.1 The Gaussian

We consider the Gaussian function G(x) = e-I1x11 2 , since approximation with
Gaussian basis functions is often used in practical applications (Moody and
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Darken, 1989; Poggio and Girosi, 1990; Poggio and Edelman, 1990; Sanner
and Slotine, 1991). Clearly G E L2(Rd), so that the space LG is well defined
in any dimension. Due to the smoothness of the Gaussian and to its fast
decay property this space of functions is rather small. However it contains
an interesting subset of the space of band limited functions, the functions
whose Fourier transform has compact support. In particular, let us define
the space of functions Bk(Rd):

Bk(Rd) f- If 1E CE0(Rd)}, (10)

that is the set of functions whose Fourier transform has compact support and
k continuous derivatives. Then the foflowing inclusion holds:

d

2
In fact if f E Bk(R d) then we have

-(S) = aeIsU2 (s) A E CEo(Rnd)G(s)-

where a is a constant depending only on the dimension d. Therefore f = G*A
where A is the Fourier transform of the function A = -. Since the following
inclusion holds (see appendix B):

d
C~ok(Rd) C A(Rd) , Vk > -d

2'
where A(Rd) is the space of the functions whose Fourier transform belongs
to LI(Rd ), then A E L1 and f E LG.

We notice that the Gaussian function and its derivatives of any order
belongs to L2, and therefore G E Hs,2 for any s > 0. Hence we can apply
corollary (3.1) to conclude that the convergence rate O(' ) also holds for
approximation in the sup norm.

4.2 Bessel-Macdonald Kernels

We now consider the Bessel-Macdonald kernels, a family of functions G,(x)
defined in terms of their Fourier transforms:

0"m(S) = ( 1+ 1( (1 + 42IIs112)2 m >0

8



The functions Gm(x) are integrable functions that decay exponentially at
infinity and may have a singularity at the origin (Stein, 1970, p. 132). How-
ever if m > d they are continuous and actually differentiable of any order
q < m - d. We want to work with continuous funtions and in what follows
we will always make the assumption m > d. Since Gmn(s) is positive and
radial, we also have that, by Bochner's theorem, Gm(x) is positive definite
(Micchelli, 1986), and therefore approximation by translates of G,(x) is a
Radial Basis Functions approximation scheme. The following observations
can be done regarding the functions G, and the space LG.:

1. One has

d
G,,EH°'2 for 0<s<m--.

2

Since we have made the assumption m > d one can take s such that
<s <m-- 1. Then we can apply corollary (3.1) to conclude that

the rate of convergence 0(') also holds for approximation in the sup
norm.

2. Since L1 C M, the space LGa contains the space V (Rd) = I of

those functions that can be written as f = G, * A with A E L1 . For
more information about the space £C, which is a special instance of
the so called potential spaces, the reader is referred to (Stein, 1970).
The space V, is related to the Sobolev space H"m'(Rd) = H m ' of the
functions whose weak derivatives up to ordcr m are in L, (see Appendix
B). More precisely one has (Stein 1970, p. 160):

H"'1 C 4. c LGm for all m even .

Therefore we conclude that if m > d and m is even, by superposition of
translates of G, we can approximate with a rate of convergence O(1)
all the functions of H"'", and hence all C" functions which rapidly
decrease to infinity.

3. Again for s < m and m > d, m even, we have the following
characterization of the space LG.:

LG,. = {f H"'2 I-(I"- ")R' f E•M }

9



In fact. iff E LGm that is f = Gm*A with A E M. then (I- A)i2f = A
since G,, is the fundamental solution of the operator (I- A)12. On the
other hand, if f E H', 2 and (I - A)-i•f = A E M, then by taking the
convolution of both sides with G, we have f = Gm * A.

5 Other Approximation Schemes

Other choices of integral representation lead to different approximation schemes
and different spaces of functions that can be approximated with a similar con-
vergence rate. For example, using the Fourier representation of a function
(if it exists) we have:

f(x) = IRd ds cos(s, x + 0(s))lf(s)[ (12)

where 0(s) is the phase of the Fourier transform f(s) of f. Jones (1990)
considers the space A(Rd) (appendix B) of the functions such that their
Fourier transform is in LI(Rd) and shows that they can be approximated by
functions of the form

n

f.(x) = • A, cos(ti -x + Oi) (13)

with the rate of convergence 0(
Another result of this type has been proved by Barron (1991). He con-

siders the set of the functions such that

IRd ds IjsjIIf(s)I < +oo (14)

that is the functions whose gradient is in A(Rd), and approximates elements
of this set by functions of the form

n

fn(x) = Aia(t, . x + 0)0

where a(.) is any sigmoidal function. Condition eq. (14) can be rewritten as

IIsllf(s)i E L1(Rd). (15)

Denoting by Id the function

__1

I(X) -jXIjdl

10



and noticing that its Fourier transform is Id(s) = 11s1]-1 we can also say that
the space of function that satisfy condition eq. (14) is the space of function
that can be written as

f = Id * A , A E A(Rd). (16)

There is a remarkable analogy between this set of function and the func-
tion space V2 considered in section (4.2), that is the set of functions such
that:

f = G, * A , A E.LI(Rd) , m > d. (17)

In eq. (16), the function Id goes to zero faster and faster as d increases,
while its Fourier transform remains unchanged. In eq. (17), because of
the constraint m > d, it is the Fourier transform of Gm that goes to zero
faster and faster as d increases, while the asymptotic decay of Gm is always
exponential. Moreover, in eq. (17) A has to belong to LI, while in eq. (16)
it is the Fourier transform of A that belongs to L1.

6 Conclusions

We briefly summarize the main results presented in this paper.

" Let f be a function on R' and assume that f can be written as f = G*A,
where G is square integrable on Rd and A is a signed Radon measure
of bounded total variation. Then there is a linear superposition of n
translates of G that approximates f in the L 2 norm with a rate of
convergence 0(

" Let f be a function on Rd whose Fourier transform has compact sup-
port and k continuous derivatives, with k > 4. Then there exists a
Gaussian Radial Basis Functions expansion with n basis functions that
approximates f in the L2 norm with a rate of convergence O(7). The
same result holds for approximation in the sup norm.

"* Let f be any function of the Sobolev space Hm-l(Rd), with m > d,
m even. Then there exists a Radial Basis Functions expansion, whose
basis function is the Bessel-Macdonald kernel G,,,(x), that approxi-
mates f with a rate of convergence 0(*') in the norm of H" 2 , with

< s < m - A similar rate of convergence can also be obtained for
the approximation in the sup norm.

11



All these examples involve spaces of functions with a number of deriva-
tives that increases with the dimension, and are consistent with the intuitive
idea that spaces of function in a high number of dimensions are very difficult
to approximate, unless some constraints are imposed to prevent their "size"
to grow exponentially fast.

One interesting feature of these results is that, thanks to the constructive
nature of Jones' and Barron's lemma, an iterative procedure is provided that
can achieve that rate. Clearly, these results concern the approximation of
a function f which is known everywhere, while in many practical situations
one would like to construct an approximation of a function f knowing only
the values of f on some (finite) set of points. For this last problem, in the
case of approximation by sigmoidal ridge functions, some results by Barron
(1992) are already available, and show that also with this further source of
error one can obtain results "independent on the dimension", for suitable
spaces of functions. It should be possible to obtain similar results for the
approximation scheme we considered here, using the same technique.

Acknowledgements We thank Tomaso Poggio for useful discussions and for a
critical reading of the manuscript.

A The Bochner Integral

Let Q C R' and let A be a positive measure on S1. For functions f : Q-+* X
with X a Banach space there are several available notions of measurability
and integration (Dunford and Schwartz, 1958; Diestel and Uhl, 1977). In
particular for all (strongly) A-measurable functions f such that fn I1f lix dA <
+o0 we can define the Bochner integral

j f dA (18)

Clearly if A is a Borel measure the continuous functions f : Q1 -* X are
(strongly) measurable. One has lemma A.1 below (Diestel and Uhl 1977,
page 48).

Lemma A.1 Let A be a positive Borel measure on f1 C Rd and f(t): f0 --+ X
with X a Banach space. If f is Bochner integrable with respect to A then

1 3-- f(t )dA (t) E co f(E)

12



If one considers a signed Radon measure A on Q one can still define the
integral of a measurable function f : Q2 -+ X with respect to A as

f (t)dA(t) f(t) d(t)dA(t) (19)

where JAI is the total variation of A and -L- denotes the Radon-Nikodym
derivative of A with respect to JAI. From lemma (A.1) one can easily obtain:

Lemma A.2 Let A be a signed Radon measure on Ql C Rd and f(t) :S --+ X
with X a Banach space. If f is A-measurable and is such that

L Ilf 1 diAl < +0

then the Bochner integral of f with respect to A is well defined and

IAl(l) f(t) dA(t) E co S. (20)

where

S = {sf(fO) I s E R , Isl < 1}.

In fact the scalar function -- l(t) is measurable, the function f(t)d-!-\(t) is
measurable, and moreover

1 If ]dA - J [fl diAl < +oo.

Hence the integral fg f dA is well defined as the right member of (14).
Then by lemma (A.1) applied to the function h(t) = f(t)-L(t) one has:

1 6B dAA, f,) f(t)TIIt d- A(t) E co .~l

On the other hand since I•1 - 1 one has

co h(fl) co S

and (20) follows.
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B Sobolev Spaces and the Space A

Here we collect a few facts about certain spaces of functions frequently used
in the paper.

Sobolev Spaces. For each positive integer s and 1 < p _ oo one defines
the Sobolev Space HS'P(Rd) = H-"P as the space of those Lp functions in
Rd whose derivatives up to the order s are LP functions.The space H3'P is a
Banach space with the norm

E IID'flILp
I'~I<s

where a is a multi-index and DO is the derivative of order a. The space Hs,2

is a Hilbert space with respect to the scalar product

(u, v) = E fR1 D'u O'v

One has also the characterization

n = u E L2 I (1 + IJW2)(i,(w) E L 2}

which can be used also to define the Sobolev spaces H--2 for non integer s.
One has the following result, which is a special case of the Sobolev embedding
theorem (Stein, 1970):
Theorem B.1 If k is a positive integer and s > k + 1 then

H ' 2 C C/C

and there is a constant cl such that

max sup ID~f(z)j < clllfIIlH.,2-
Ial:k ZERd

The Fourier algebra A. The space A of the tempered distributions whose
Fourier transform is a summable function is in current use in Fourier analysis
(Herz, 1968; Katznelson, 1968). One has

Hk,2 C A for k > d
2

In fact (Barron, 1991; footnote) one may write
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f [Vo( + lWl ) 2

where both factors on the right side belong to L2 if k > . In particular it
follows that Cok C Hk.2 C A for k > dpa

It is also clear that A C Co where Co is the completion in the L•, norm
of C° i.e. the space of continuous bounded functions that converge to zero
for jlxii -- o.
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